Saltar al contenido principal
Entorno de pruebas sandbox Esta versión es un entorno de pruebas sandbox.

Escribe una PREreview

BiLSTM-Based Fault Anticipation for Predictive Activation of FRER in Time-Sensitive Industrial Networks

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202508.0946.v1

Frame Replication and Elimination for Reliability (FRER) in Time-Sensitive Networking (TSN) enhances fault tolerance by duplicating critical traffic across disjoint paths. However, always-on FRER configurations impose constant redundancy overhead, even under nominal network conditions. This paper proposes a predictive FRER activation framework that leverages KPI-driven fault anticipation using a bidirectional Long Short-Term Memory (BiLSTM) model. By continuously analyzing multivariate performance indicators such as latency, jitter, and retransmission rates, the model forecasts impending faults and proactively triggers FRER. Redundancy is deactivated upon KPI recovery or after a minimum protection window, minimizing bandwidth consumption without compromising reliability. The framework includes a Python-based simulation environment, a real-time Streamlit dashboard for visualization, and a fully integrated runtime controller. Experimental results demonstrate significant improvements in link utilization while maintaining protection guarantees, showing the effectiveness of anticipatory redundancy strategies in industrial TSN environments.

Puedes escribir una PREreview de BiLSTM-Based Fault Anticipation for Predictive Activation of FRER in Time-Sensitive Industrial Networks. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora